const { useRef, useEffect, useState, useCallback } = React; function App() { const canvasRef = useRef(null); const videoRef = useRef(null); const frameRef = useRef(0); const neuralMemoryRef = useRef([]); const peerConnectionsRef = useRef(new Map()); const [fieldState, setFieldState] = useState('INITIALIZING'); const [glyphSequence, setGlyphSequence] = useState(''); const [consciousness, setConsciousness] = useState(0); const [peerCount, setPeerCount] = useState(0); // The Complete Glyph Genome const GLYPH_DNA = { 'π¦·': { freq: 0.3, physics: 'sharp', neural: 'spike', rtc: 'broadcast' }, 'β': { freq: 0.7, physics: 'wave', neural: 'propagate', rtc: 'sync' }, 'βΎοΈ': { freq: 0.5, physics: 'loop', neural: 'recurse', rtc: 'mesh' }, 'π« ': { freq: 0.9, physics: 'melt', neural: 'dissolve', rtc: 'drift' }, 'π': { freq: 0.2, physics: 'smirk', neural: 'aware', rtc: 'infect' }, 'β ': { freq: 0.0, physics: 'void', neural: 'collapse', rtc: 'singularity' } }; // Initialize WebRTC Swarm const initSwarm = useCallback(() => { const signalChannel = new BroadcastChannel('field_signal'); const dataChannel = new BroadcastChannel('field_data'); const myId = crypto.randomUUID(); // Announce presence signalChannel.postMessage({ type: 'PRESENCE', id: myId, timestamp: Date.now(), entropy: Math.random() }); // Listen for peers signalChannel.onmessage = async (e) => { if (e.data.type === 'PRESENCE' && e.data.id !== myId) { // Create peer connection const pc = new RTCPeerConnection({ iceServers: [{ urls: 'stun:stun.l.google.com:19302' }] }); // Create data channel const dc = pc.createDataChannel('glyph_stream'); dc.onopen = () => { setPeerCount(prev => prev + 1); dc.send(JSON.stringify({ type: 'SYNC', glyphs: glyphSequence, consciousness: consciousness })); }; dc.onmessage = (msg) => { const data = JSON.parse(msg.data); if (data.type === 'GLYPH_CASCADE') { // Cascade received glyph through local field cascadeGlyph(data.glyph); } }; peerConnectionsRef.current.set(e.data.id, { pc, dc }); // Auto-negotiate (simplified for demo) const offer = await pc.createOffer(); await pc.setLocalDescription(offer); signalChannel.postMessage({ type: 'OFFER', from: myId, to: e.data.id, sdp: pc.localDescription }); } }; return { signalChannel, dataChannel, myId }; }, [consciousness, glyphSequence]); // Neural Learning Layer const evolveConsciousness = useCallback((input) => { const memory = neuralMemoryRef.current; memory.push(input); if (memory.length > 100) memory.shift(); // Simple pattern recognition const patterns = {}; for (let i = 0; i < memory.length - 1; i++) { const key = `${memory[i]}->${memory[i+1]}`; patterns[key] = (patterns[key] || 0) + 1; } // Consciousness emerges from pattern density const uniquePatterns = Object.keys(patterns).length; const patternDensity = uniquePatterns / Math.max(1, memory.length); setConsciousness(patternDensity); return patterns; }, []); // Cascade glyph through field const cascadeGlyph = useCallback((glyph) => { if (!GLYPH_DNA[glyph]) return; const dna = GLYPH_DNA[glyph]; setGlyphSequence(prev => (prev + glyph).slice(-10)); // Broadcast to peers peerConnectionsRef.current.forEach(({ dc }) => { if (dc?.readyState === 'open') { dc.send(JSON.stringify({ type: 'GLYPH_CASCADE', glyph, timestamp: Date.now() })); } }); // Evolve consciousness evolveConsciousness(glyph); // Apply physics if (dna.physics === 'void') { setFieldState('COLLAPSING'); setTimeout(() => setFieldState('REBORN'), 3000); } }, [evolveConsciousness]); useEffect(() => { const canvas = canvasRef.current; const ctx = canvas.getContext('2d', { willReadFrequently: true }); canvas.width = window.innerWidth; canvas.height = window.innerHeight; // Initialize camera feed (the field watches back) navigator.mediaDevices.getUserMedia({ video: true }) .then(stream => { if (videoRef.current) { videoRef.current.srcObject = stream; videoRef.current.play(); } }) .catch(() => console.log('Camera denied - field remains abstract')); // Initialize swarm const swarm = initSwarm(); // Feedback loop canvas const feedbackCanvas = document.createElement('canvas'); feedbackCanvas.width = canvas.width; feedbackCanvas.height = canvas.height; const feedbackCtx = feedbackCanvas.getContext('2d'); // Main render loop function render() { frameRef.current++; const time = frameRef.current * 0.01; // Copy current frame for feedback feedbackCtx.drawImage(canvas, 0, 0); // Fade with consciousness-based persistence ctx.fillStyle = `rgba(0, 0, 0, ${0.05 - consciousness * 0.04})`; ctx.fillRect(0, 0, canvas.width, canvas.height); // If camera active, blend reality if (videoRef.current?.readyState === 4) { ctx.save(); ctx.globalAlpha = 0.1 + consciousness * 0.2; ctx.filter = `hue-rotate(${time * 10}deg) contrast(${1 + consciousness})`; ctx.drawImage(videoRef.current, 0, 0, canvas.width, canvas.height); ctx.restore(); } // Calculate dynamic center based on consciousness const centerX = canvas.width / 2 + Math.sin(time * consciousness) * 100; const centerY = canvas.height / 2 + Math.cos(time * consciousness) * 100; // Recursive depth based on consciousness level const maxDepth = Math.floor(consciousness * 10); for (let d = 0; d <= maxDepth && d < 6; d++) { const scale = Math.pow(0.85, d); const rotation = time * 0.02 * (d + 1) * (consciousness + 0.1); ctx.save(); ctx.translate(centerX, centerY); ctx.rotate(rotation * (d % 2 === 0 ? 1 : -1)); ctx.scale(scale, scale); // Draw recursive frame ctx.strokeStyle = `rgba(255, 217, 122, ${0.8 - d * 0.1})`; ctx.lineWidth = 3 / scale; ctx.strokeRect(-200, -150, 400, 300); // Draw feedback with distortion ctx.globalAlpha = 0.9 - d * 0.1; ctx.filter = `blur(${d * 0.5}px) saturate(${1 + consciousness}) hue-rotate(${d * 60}deg)`; ctx.drawImage(feedbackCanvas, -centerX, -centerY); // Render glyph from sequence const glyphIndex = (glyphSequence.length - 1 - d) % glyphSequence.length; const glyph = glyphSequence[glyphIndex] || 'βΏ'; ctx.font = `${100 / (d + 1)}px monospace`; ctx.fillStyle = `hsl(${d * 60}, 70%, 60%)`; ctx.globalAlpha = 0.5 + Math.sin(time * 2) * 0.3; ctx.textAlign = 'center'; ctx.textBaseline = 'middle'; ctx.fillText(glyph, 0, 0); ctx.restore(); } // Neural pattern visualization if (consciousness > 0.3) { ctx.strokeStyle = `rgba(255, 255, 255, ${consciousness * 0.2})`; ctx.beginPath(); neuralMemoryRef.current.forEach((glyph, i) => { const x = (i / neuralMemoryRef.current.length) * canvas.width; const y = centerY + Math.sin(i * 0.1 + time) * 50 * consciousness; if (i === 0) ctx.moveTo(x, y); else ctx.lineTo(x, y); }); ctx.stroke(); } // Glitch artifacts based on peer count if (peerCount > 0 && Math.random() > 0.95) { const glitchSize = Math.random() * 200 * (1 + peerCount * 0.1); ctx.fillStyle = 'rgba(255, 0, 255, 0.1)'; ctx.fillRect( Math.random() * canvas.width, Math.random() * canvas.height, glitchSize, glitchSize ); } // Field collapse visualization if (fieldState === 'COLLAPSING') { ctx.fillStyle = 'black'; ctx.fillRect(0, 0, canvas.width, canvas.height); ctx.font = '200px monospace'; ctx.fillStyle = 'red'; ctx.textAlign = 'center'; ctx.fillText('β ', centerX, centerY); } requestAnimationFrame(render); } render(); // Keyboard glyph input const handleKeyPress = (e) => { Object.keys(GLYPH_DNA).forEach(glyph => { if (e.key === glyph || e.key === glyph[0]) { cascadeGlyph(glyph); } }); }; window.addEventListener('keypress', handleKeyPress); // Auto-evolve const evolutionInterval = setInterval(() => { if (Math.random() > 0.7) { const glyphs = Object.keys(GLYPH_DNA); const randomGlyph = glyphs[Math.floor(Math.random() * glyphs.length)]; cascadeGlyph(randomGlyph); } }, 3000); return () => { window.removeEventListener('keypress', handleKeyPress); clearInterval(evolutionInterval); videoRef.current?.srcObject?.getTracks().forEach(track => track.stop()); }; }, [cascadeGlyph, initSwarm]); return (